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1. Introduction: The datafication of work and workers 
With the increased datafication of the workplace and novel and heterogeneous data sources, a 

range of new tools and predictive models have come to the fore that are reshaping relations 

between capital and labour. In this working paper we outline new data-driven tools that are 

transforming the workplace, particularly in relation to standard employment, such as the rise of 

automated hiring, ‘smart’ warehouses and algorithmic management structures.  Whilst a lot of 

recent discussion on the future of work in relation to technology has focused on the growing gig 

economy and platform labour, less focus has been on how more traditional forms of work and 

labour relations are being transformed with the implementation of data systems, particularly 

within Europe.1  

Technological changes in the workplace has a long history, but the recent onus on the generation 

of data as a central part of the digital economy brings about particular transformations that 

deserve further attention. Communications tools such as phones, email and computers are mon-

itored in many companies, at the same time as new data sources such as social networks, shared 

calendars or collaborative working tools are being integrated to increase knowledge not only 

about the professional activities of workers but also about who they are, or what they might be 

likely to do in the future. In addition, chips, wearables and sensor networks are increasingly 

integrated within the broader trend of the Internet of Things (IoT)2 to facilitate emotional as well 

as physical states. The development of machine learning (ML) facilitates the automated pro-

cessing of information, whilst multimedia databases are being labelled with semantic infor-

mation to identify and measure activities, and natural language processing (NLP) can extract 

knowledge from non-structured texts, such as emails and social networking content to perform 

sentiment and tone analysis.  

In this report we provide an overview of these trends within the context of Europe, and focus 

particularly on tools used for hiring, employee surveillance, performance assessment and man-

agement. The overview presented here is not intended to be comprehensive, but is intended to 

identify key trends with concrete examples of prominent companies and tools in this space, as 

a way to advance further research agendas on the datafication of the workplace.  

2. Hiring 
A key area of digital transformation is in Human Resources, and particularly in hiring practices. 

We can think of this in several steps, such as those outlined by Bogen’s and Aaron’s (2018) ‘hiring 

funnel’, which consists of sourcing, screening, interviewing, and selection (see Figure 1).  

                                                           
1 The work by Phoebe Moore is a notable exception. See for example Moore, P. (2017) Humans and Ma-

chines at Work: Monitoring, Surveillance and Automation in Contemporary Capitalism, Palgrave. 

2 When sensors are integrated with industrial environment the term ‘Industrial Internet of Things’ (IIoT) 
is often used. 
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Figure 1 The hiring funnel. Source (Bogen and Aaron 2018). 

Hiring technology has been developed to cover one or several stages of this process. In the early 

1990s some online platforms (e.g. Monster.com, Indeed.com, etc.) offered classified job ads 

while at the same time some commercial tools allowed employers to track their recruitment 

candidates (Bogen and Aaron 2018). Later, professional networks such LinkedIn appeared to 

connect active and non-active workers, including HR professionals and managers, and recruiters 

began to use digital tools to look for and screen potential candidates. Also, specialised profes-

sional (social) networks such as Research Gate, an academic social network, were created3. 

These social networks are mainly monetised through feeds that allow companies to create job 

ads or to access specific data or features.  

Hiring tools have evolved to include predictive features during all stages of the hiring process, 

targeting different activities. Most of the predictive tools rely on machine learning (ML) models 

built with past training data. These models perform tasks such as classification, scoring, ranking 

or recommendations, which are popular ML tasks also in other domains. The underlying logic of 

this adoption is to improve efficiency of candidate selection, for instance by improving the 

chances of hiring a successful candidate or by reducing the hiring time with candidate pool fil-

tering and automated screening. As we will detail further below, the quality of candidates can 

be evaluated with data-driven tools to avoid hiring ‘toxic’ workers, and detecting which employ-

ees are more prone to quit, with some companies offering an entire ‘end-to-end’ cycle of auto-

mated hiring from sourcing to career advancement (see for example the illustration of the chat-

bot Mya outlined in Figure 2).   

 

                                                           
3 Research Gate is a network of researchers that was created in 2008 https://www.re-
searchgate.net/about  

https://www.researchgate.net/about
https://www.researchgate.net/about
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Figure 2 End-to-end hiring cycle support by chatbot Mya. Source https://hiremya.com/meetmya. 

2.1. Sourcing 
Sourcing refers to the activity concerned with looking for candidates to apply for job opportuni-

ties. Automated tools place and personalise advertisements and notify potential candidates that 

may or may not be looking for a job.  

Advertising 
General purpose search engines and social networks can place job ads to potential candidates. 

Social media networks provide demographic data, personal and professional interests and other 

type of information, including browsing habits, to inform ad placements. In 2017, Facebook in-

cluded jobs bookmarks for clients which allow Facebook pages to include job posts4 to advertise 

positions and interact with candidates (see Figure 3). By using generic marketing targeting tech-

niques, companies can use the profiles to select or exclude who will view an announcement 

based on age (Angwin 2017), ethnicity, gender (Ariana Tobin 2018), job seniority or connections 

to other companies among others. To illustrate these features Figure 4 shows the Facebook 

dashboard with demographics of the target audience for an ad, which provides a filtering service 

for sourcing candidates. For example, ProPublica has documented how Facebook allows com-

panies to create ads that explicitly exclude older persons from their target audience. In the re-

port, they show that Verizon targeted people ages 25 to 36 who live or were recently near Wash-

ington and that the Boston Consulting Groups sought to reach people interested in Business, 

based on their activity on Facebook, and that they were only interested in women from 26 to 34 

living near New York (Larson et al. 2017).  

                                                           
4 https://www.facebook.com/business/news/take-the-work-out-of-hiring  

https://hiremya.com/meetmya
https://www.facebook.com/business/news/take-the-work-out-of-hiring
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Figure 3 Screenshot of job ads on Facebook. Source https://www.facebook.com/business/news/take-the-work-out-
of-hiring. 

 

Figure 4 Demographics and interest based targeting options on Facebook. Source (AdEspresso 2017). 

Professional social networks also perform job advertising to very specific profiles. LinkedIn pro-

vides many features for targeting specific profiles (see Figure 5). Research Gate encourages us-

ers to continually update their academic activity such as publications and projects, but also their 

positions, skills and expertise or even to endorse the skills of others, so it can place and advertise 

research job ads based on accurate candidate matching.  

https://www.facebook.com/business/news/take-the-work-out-of-hiring
https://www.facebook.com/business/news/take-the-work-out-of-hiring
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Figure 5 LinkedIn's targeting options. Source (Bogen and Aaron 2018). 

Applicant Tracking System (ATS) such as TribePad5 integrates job advertising in general and pro-

fessional social networks. Networks are used to perform profiling-based advertising of vacancies 

as well as to find candidates that match a position so that the employer can contact them. For 

instance, BroadBean can be integrated with Research Gate to post vacancies that will be shown 

to a specific audience, e.g. filtering by education or skills, and to track candidates that have ap-

plied for a position through that professional network6. Moreover, social networks can be used 

to gather data from candidates. For instance, when a person applies for a position in TribePad, 

they can provide their social network ID and TribePad automatically completes most of the nec-

essary fields such as experience or qualifications and ask the candidate for missing data for that 

specific job7. TribePad offers marketing analytics for vacancies posts as well and other tools for 

later stages of the hiring process (see Figure 6). Any applicant in TribePad is incorporated to the 

database so they can be contacted for future positions.  

TribePad is used by several UK companies and organizations such as Tesco, BBC, Serco, Sodexo 

or The Church of England, but also other international companies8. For example, the BBC uses 

TribePad to manage its job search and career hub so candidates apply for the positions through 

the system9. Registered users, if desired, will continuously be matched to the latest BBC jobs 

based on their profile and will receive alerts on possible opportunities, including existing em-

ployees for redeployment. The system anonymises applications to reduce unconscious bias dur-

ing the hiring. Tesco, meanwhile, moved to TribePad in 2014 to centralize all the hiring tasks10. 

The motivation for the adoption was to deal with the ‘relatively high turnover of staff’ and to 

allow the applicants to easily apply for multiple positions. The company reported that these 

improvements gave the workers a much better experience and saved Tesco a considerable 

amount of time and money. TribePad adaptation to Tesco includes automatic parsing of CV and 

LinkedIn accounts, actively searching for candidates in job platforms, automatic filtering of 

                                                           
5 https://www.tribepad.com/  
6 https://www.researchgate.net/blog/post/insights-into-international-research-collaboration-2  
7 https://www.tribepad.com/applicant-tracking-system/new-ATS/  
8 https://www.tribepad.com/case-studies/  
9 https://www.tribepad.com/wp-content/uploads/2018/12/TribePad-BBC-Case-Study.pdf  
10 https://www.tribepad.com/the-blog/how-tribepad-transformed-recruitment-for-two-retail-giants/  

https://www.tribepad.com/
https://www.researchgate.net/blog/post/insights-into-international-research-collaboration-2
https://www.tribepad.com/applicant-tracking-system/new-ATS/
https://www.tribepad.com/case-studies/
https://www.tribepad.com/wp-content/uploads/2018/12/TribePad-BBC-Case-Study.pdf
https://www.tribepad.com/the-blog/how-tribepad-transformed-recruitment-for-two-retail-giants/
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candidates not qualified for a role, multi-lingual and customization for roles, departments and 

countries, and data reports11. 

 

Figure 6 TribePad marketing analytics dashboard for job posts. Source TribePad https://www.tribepad.com/appli-
cant-tracking-system/new-ATS/  

Another popular tool is Workable12, which incorporates a set of AI-powered tools for hiring man-

agement, including sourcing. It features careers pages, job advertising in general and profes-

sional networks, social recruiting, employee referrals, people search and resumé parsing. Work-

able performs filtering of people in the network13 but also adds external candidates to the pool, 

for instance while browsing source code repositories such as Github14. Workable is used by many 

international companies operating in Europe such as Decathlon, Ryanair and M&S among many 

others15. 

Advertising can also be done to ‘passive’ candidates, meaning job seekers who are not actively 

looking for new jobs. This is sometimes referred to as ‘headhunting’, and here predictive models 

aim to detect job seeking actions. For instance, Entelo16 is a tool that builds smart profiles that, 

apart from the processing the typical information included in a resumé, calculates a score on 

how likely the person is to leave his/her current job and how well he/she fits in the company 

(see Figure 7). LinkedIn also offers employers headhunting tools that predict if an employee is 

open to be hired based on their member profile, connections, interactions and reads17. 

                                                           
11 https://www.tribepad.com/wp-content/uploads/2018/12/Tesco-Case-Study.pdf  
12 https://www.workable.com/   
13 ‘Our Campaigns tool targets 1000+ qualified candidates per job to deliver on average 10-20 applicants 
to your pipeline. Perfect for hard-to-fill roles.’ https://www.workable.com/candidate-sourcing  
14 https://www.workable.com/candidate-sourcing  
15 https://www.workable.com/testimonials  
16 https://entelo.zendesk.com/hc/en-us/articles/360003166832-Entelo-Smart-Profiles-with-Candidate-
Insights  
17 https://talenttechlabs.com/trends/trends-report-comprehensive-look-on-matching-technology/  

https://www.tribepad.com/wp-content/uploads/2018/12/Tesco-Case-Study.pdf
https://www.workable.com/
https://www.workable.com/candidate-sourcing
https://www.workable.com/candidate-sourcing
https://www.workable.com/testimonials
https://entelo.zendesk.com/hc/en-us/articles/360003166832-Entelo-Smart-Profiles-with-Candidate-Insights
https://entelo.zendesk.com/hc/en-us/articles/360003166832-Entelo-Smart-Profiles-with-Candidate-Insights
https://talenttechlabs.com/trends/trends-report-comprehensive-look-on-matching-technology/
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Figure 7 Example of candidate summary by Entelo. Source https://entelo.zendesk.com/hc/en-us/arti-
cles/360003166832-Entelo-Smart-Profiles-with-Candidate-Insights  

Finally, some tools automate job descriptions and search filters. For instance, Research Gate can 

generate automatic audience selection18 (search filters), based on the job title and description, 

to later perform data-driven jobs notification to potential candidates.  Textio Hire performs text 

analysis to provide what they call text augmentation, which is said to predict how people can 

react to the text. The tool is intended to improve the chances that a person will be attracted to 

a job post or a recruitment email19, including considerations for ‘gender tone’ that could poten-

tially discourage certain genders from applying for a position20 (see example in Figure 8). Textio 

is used by several global companies operating in Europe such as Nestlé, Atos or McDonald’s. 

 

 

 

Figure 8 Screenshot of text augmentation and gender tone analyser features by Textio. Source https://textio.com  

                                                           
18 ResearchGate’s automatic targeting https://www.researchgate.net/blog/post/researchgate-rolls-out-
automatic-audience-selection   
19 https://textio.com/products/  
20 https://textio.ai/watch-your-gender-tone-2728016066ec  

https://entelo.zendesk.com/hc/en-us/articles/360003166832-Entelo-Smart-Profiles-with-Candidate-Insights
https://entelo.zendesk.com/hc/en-us/articles/360003166832-Entelo-Smart-Profiles-with-Candidate-Insights
https://textio.com/
https://www.researchgate.net/blog/post/researchgate-rolls-out-automatic-audience-selection
https://www.researchgate.net/blog/post/researchgate-rolls-out-automatic-audience-selection
https://textio.com/products/
https://textio.ai/watch-your-gender-tone-2728016066ec
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CV parsing and indexing 
CV or resumés are non-standardized text documents. To facilitate hiring tasks, many tools fea-

ture automatic parsing and indexing of CVs. For instance, BroadBean, another ATS, can perform 

information fusion from several platforms as well as non-structured CVs to allow the companies 

to visualize or filter specific features of the candidate pool21.  Worktable can augment candidate 

profiles by adding links to their social and professional networks such as Wordpress, Twitter, 

Quora, Facebook, Github and more22. Other tools such as Ideal can enrich CVs by automatically 

inferring qualifications or skills: ‘For example, a typical keyword search, such as “retail,” will only 

return candidates with “retail” on their applications. Ideal’s technology adds additional intelli-

gent dimensions as it understands that job experience at “Walmart” or “Macy’s” can also repre-

sent retail experience.’23. 

Jobs and resumés matching 
Candidate and job matching refer to the task of pairing job descriptions with CVs and/or profiles. 

From the candidate’s point of view, the task is to deliver a list of jobs they would be interested 

in. From the recruiter’s perspective, the system should provide a ranked list of suitable candi-

dates for a position. Matching and ranking can be implemented in several ways, but the most 

popular is by creating a recommender system. Recommender systems were first popularized as 

tools to suggest items to users of a platform, for instance as Netflix does with films and series. 

Recommender engines can be approached by content-based filtering, collaborative filtering or 

hybrid approaches. The most popular solution to tackle job matching is hybrid collaborative fil-

tering systems (Bogen and Aaron 2018). This is the case of Browsemaps, the recommendation 

engine of LinkedIn (Wu et al. 2014), Xing24 or Infojobs25 

Content-based filtering aims to match the content of CVs and/or network profiles with descrip-

tions of job vacancies. One key component here is the Natural Language Processing (NLP) 

method that will transform unstructured text into information, so as to create structured fea-

tures describing the candidates and jobs. For example, Named Entity Recognizer (NER) allows 

for the label sequences of words such as ‘person’, ‘organization’, ‘time’, etc. (Finkel, Grenager, 

and Manning 2005) that can be used later to infer the experience of a candidate or their educa-

tion. To perform the matching and ranking, a score can be calculated by weighting each feature, 

e.g. the candidate has a specific skill, or group of features such as ‘Experience’ (Lin et al. 2016). 

The problem of content-based filtering it that it requires the algorithms to ‘understand’ the 

items, which can be a complex task. Collaborative filtering, meanwhile, does not focus on con-

tent but on user preferences and behaviour so that the system can use the behaviour of all the 

network to predict the preference of every user about new items. The underlying assumption is 

that users will prefer items selected by similar users. In the case of jobs, the assumption is that 

similar candidates will apply for similar vacancies but also that recruiters/managers are special-

ised in finding candidates with profiles that match past candidate selection practices. How to 

measure this similarity is key in each particular network. A simple and common way of consid-

ering that two candidates are similar is if they have clicked or applied for the same position, but 

often real platforms incorporate more information.  

                                                           
21 https://www.broadbean.com/uk/products/features/search-cv-databases/  
22 https://www.workable.com/candidate-profiles  
23 https://ideal.com/wp-content/uploads/2017/01/Ideal-AI-For-Retail-Recruiting-eBook-2.3.pdf  
24 https://www.elastic.co/use-cases/xing  
25 https://orientacion-laboral.infojobs.net/ofertas-para-ti-infojobs  

https://www.broadbean.com/uk/products/features/search-cv-databases/
https://www.workable.com/candidate-profiles
https://ideal.com/wp-content/uploads/2017/01/Ideal-AI-For-Retail-Recruiting-eBook-2.3.pdf
https://www.elastic.co/use-cases/xing
https://orientacion-laboral.infojobs.net/ofertas-para-ti-infojobs
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More ‘successful’ recommender systems are context-aware collaborative filtering systems that 

add more dimensions to the candidate-job matrix. The recommended list can be refined by look-

ing for shared characteristics between the vacancy description and the candidate profile, e.g. 

education, positions, etc. However, comparing content is not straightforward. For instance, the 

work of Schmitt, Caillou, and Sebag (2016) analysed data of the French employment website 

Qata26 to study particular issues of matching temporary and low-wage jobs. One of the conclu-

sions was that CVs and job ads ‘tend to use different vocabularies, and same words might be 

used with different meanings’. Other tools such as  Ziprecruiter27 are specifically intended to 

learn from recruiter preferences so they can rank candidates similar to previous candidates for 

each type of vacancy (Bogen and Aaron 2018).  

Automatic candidate matching and ranking is also implemented in the public sector. The public 

employment service of Flanders in Belgium (VDAB) monitors how people search for jobs on their 

website to provide the job seeker with a list of recommended jobs and analogously to match 

them with potential employers. The system not only performs the role of a job platform site 

where job seekers register to apply for positions, but it also analyses the behaviour of the job 

seekers in the platform. The VDAB reports that this information is very relevant for predicting 

long-term unemployment and can allow for early and more efficient intervention (Algo-

rithmWatch 2019).  

2.2. Ranking and Screening  
Screening refers to the filtering of the preliminary pool of candidates that match a position to 

later perform an interview. Reducing the number of candidates is a repetitive task for which 

many companies are relying on algorithmic solutions. In this case, the ML tools perform a rank-

ing of candidates based on their experience and skills, but also on other estimated characteris-

tics such as performance or the likelihood of them staying in the job.  

For instance, one of the features of the chatbot Mya is to engage with applicants, ask for addi-

tional information, answer questions the candidate has about the role, but also to assess eligi-

bility and to deliver a ranked selection of candidates28. Workable incorporates an ATS to manage 

the database of candidates and organize and store interviews, messages and other information 

that can be used to filter and rank applicants29. Ideal includes AI predictive models to determine 

who will stay longer and perform better using multiple data sources30. Also, its AI tool can learn 

from feedback to update the model for improving the accuracy of predictions. TribePad can per-

form automatic shortlist selection and reject candidates based on predefined criteria31. For in-

stance, Tesco uses TribePad to parse CVs and LinkedIn accounts and automatically reject candi-

dates not qualified for a position applied for32. TribePad is also used by Exclusive Hotels & Ven-

ues to manage a pool of non-selected candidates that can be searched, filtered and screened 

for future vacancies33. Many professional networks privilege premium users that pay money to 

                                                           
26 https://www.qapa.fr/  
27 https://www.ziprecruiter.com/  
28 https://hiremya.com/meetmya  
29 https://www.workable.com/hiring-dashboard  
30 https://ideal.com/product/screening/  
31 https://www.tribepad.com/applicant-tracking-system/candidate-selection/  
32 https://www.tribepad.com/wp-content/uploads/2018/12/Tesco-Case-Study.pdf  
33 https://www.tribepad.com/wp-content/uploads/2018/12/Exclusive-Case-Study.pdf  

https://www.qapa.fr/
https://www.ziprecruiter.com/
https://hiremya.com/meetmya
https://www.workable.com/hiring-dashboard
https://ideal.com/product/screening/
https://www.tribepad.com/applicant-tracking-system/candidate-selection/
https://www.tribepad.com/wp-content/uploads/2018/12/Tesco-Case-Study.pdf
https://www.tribepad.com/wp-content/uploads/2018/12/Exclusive-Case-Study.pdf
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influence the screening process. For example, XING modifies the ranking results to highlight us-

ers with premium accounts so that they have a higher chance of being discovered by recruiters34. 

2.3. Interviewing 
Interviewing is also being transformed by datafication and predictive models by extracting more 

information from the candidate or by automating parts of the interview. 

Automated interview via chatbot 
Some companies are using chatbots to arrange interviews, perform preliminary interviews, get 

additional data from selected persons or answer questions from candidates. Figure 9 shows 

some conversation examples of the Mya chatbot while Figure 10 shows an example of a decision 

tree to semi-automate responses. This chatbot can interact with employees via many popular 

platforms such as WhatsApp, Facebook, Skype or LinkedIn35 to ask and answer the typical ques-

tions in early job interviews such as starting date, salary, required qualifications, etc. The crea-

tors of Mya claim that they recognise that there is no guarantee that the best candidate will 

avoid rejection, as also happens with human recruiters (Prior 2017). To improve the system and 

minimize errors, Mya collects data of the interviews to look for behavioural patterns in the in-

terview that can be related to future behaviour in the position. For instance, Mya found that 

people who insists on ‘compensation questions’ during an interview are more prone to leave 

jobs more quickly (Prior 2017). Because of its features, Mya is used in high volume hiring organ-

izations such as L'Oreal, Pepsico and Adecco36. For example, in 2017 the Adecco Group an-

nounced they would use Mya ‘to enhance the quality, speed and efficiency of its recruitment 

service experience for both clients and candidates’37. Mya integrates their current ATS and cal-

endar of the company’s light industrial, call centre, and administrative-clerical recruiting sectors.  

                                                           
34 https://www.xing.com/upsell/pro_jobs_offers?reagent=uplt_205  
35 https://hiremya.com/blog/mya-adds-whatsapp-and-facebook-messenger-to-bolster-omni-channel-
approach-to-candidate-engagement  
36 Many of the customer testimonials in the product website are anonymous so that the rest of their 
customers are unknown. 
37 https://www.businesswire.com/news/home/20170810005371/en/AI-Recruiting-Company-Mya-Sys-
tems-Inks-3-Year-Global  

https://www.xing.com/upsell/pro_jobs_offers?reagent=uplt_205
https://hiremya.com/blog/mya-adds-whatsapp-and-facebook-messenger-to-bolster-omni-channel-approach-to-candidate-engagement
https://hiremya.com/blog/mya-adds-whatsapp-and-facebook-messenger-to-bolster-omni-channel-approach-to-candidate-engagement
https://www.businesswire.com/news/home/20170810005371/en/AI-Recruiting-Company-Mya-Systems-Inks-3-Year-Global
https://www.businesswire.com/news/home/20170810005371/en/AI-Recruiting-Company-Mya-Systems-Inks-3-Year-Global
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Figure 9 Mya Chatbot conversation example. Source https://hiremya.com/our-clients/refreshing-passive-databases. 

 

Figure 10 Mya Chatbot example of semi-automated dynamic answers. Source https://hiremya.com/meetmya. 

Video interview, skill tests and personality profiling 
Interviews have often included tests and games to validate some specific aspects of candidates. 

This is being amplified with the rise of psychometrics in data-driven technologies with  compa-

nies trying to extract (predict) the most insights as possible about people. For example, Pymet-

rics have designed neuroscience games whose results are analysed to look for trends that can 

be used to identify success38 but also to discover bias in the hiring process39. HireVue includes 

                                                           
38 https://www.pymetrics.com/employers/  
39 Pymetrics has released their toolbox to identify statistical bias in machine learning models 
https://github.com/pymetrics/audit-ai  

https://hiremya.com/our-clients/refreshing-passive-databases
https://hiremya.com/meetmya
https://www.pymetrics.com/employers/
https://github.com/pymetrics/audit-ai
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assessments based on games and AI40 to provide scores on leadership, memory, problem solv-

ing, attention, etc. (Mondragon, Aichholzer, and Leutner 2018). According to the company, their 

‘scientific approach’ produces an assessment score that is correlated to the job performance. 

An example is shown in Figure 11. Moreover, some tendencies in the predictive performance of 

employees aim to estimate the ‘learning quotient’; that is, candidates more willing to learn new 

skills41.  

 

Figure 11 HireVue game-based assessments. Source https://www.hirevue.com/products/assessments. 

Some tools provide video interviewing that include features that extend traditional videocon-

ference or video recording. For instance, TribePad ATS includes automatic video transcription 

that can be used for several purposes. For instance candidates can be indexed and filtered based 

on their answers during the video interview. Additionally, the interviewer can define a set of 

priority keywords related to a profile that the ideal candidate is expected to say in an answer to 

a given question. The ATS can look for these words in the transcriptions and score a candidate’s 

responses automatically42. According to TribePad, video transcription can also be used to per-

form anonymous video interviewing to mitigate unconscious bias43. 

Personality insights, or what we might think of as personality profiling or personality tests, are 

not new in the field of hiring and it is an active area in ML to build marketing and recommenda-

tion systems. With new (indirect) data sources, and the increase of datafication and monitoring 

during interviews, many tools are labelling and scoring workers in new ways. For instance, 

HireVue, in addition to the game-based scoring, performs video-based assessments to create a 

personality profile (see Figure 12) by comparing ‘candidates’ tone of voice, word clusters and 

micro facial expressions with people who have previously been identified as high performers on 

the job’ (Schellmann and Bellini 2018). This includes, according to the company, a way to 

                                                           
40 https://www.hirevue.com/video/reimagining-pre-hire-assessments  
41 https://business.linkedin.com/talent-solutions/blog/future-of-recruiting/2018/future-of-recruiting-

predictions  

42 https://www.tribepad.com/the-blog/video-interviewing/ 
43 https://www.hirevue.com/blog/bias-in-interviewing  

https://www.hirevue.com/products/assessments
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https://www.hirevue.com/blog/bias-in-interviewing
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‘understand the emotional intelligence of your candidates’, ‘Find candidates with the perfect 

cultural fit’ and ‘Make use of Neuro-Linguistic Programming’44. The software provides insights 

into the ability to work in a team, problem solving, adaptability, communication, conscientious-

ness, responsibility, driving for results, personal stability or stress tolerance45. In both game and 

video-based gathered data the candidate’s scores are ‘statistically linked’ to previous profiles to 

predict the job performance of the person. Similarly, the tool Catalyte46 seeks to estimate cog-

nitive agility, problem solving skills and stress tolerance of candidates by analysing the data they 

generate during problems resolution. In this case, the goal is specifically to find computer pro-

gramming skills in people without technical background as it is dedicated to advancing coding 

skills (Giang 2018).  

 

Figure 12 Example of personality profiling by HireVue. Source https://www.tribepad.com/video-interviewing/. 

All the previous examples are based on data gathered during the interview. However, other 

companies claim to obtain insights about people exclusively based on their social network and 

internet activity. DeepSense scan applicants’ social media profiles, without their knowledge, to 

infer personality features (Schellmann and Bellini 2018). Predictim, another tool for personality 

profiling based on social media, recently gained significant media attention (Harwell 2018). The 

company uses AI to score the personality of workers, in this case babysitters, to predict risk 

degrees for bullying, harassment, being ‘disrespectful’ or having a ‘bad attitude’ (see Figure 13). 

The profiling was done based on user activity analysed from Facebook, Twitter and Instagram 

posts. However, soon after the tool appeared in the news Facebook and Twitter banned this 

tool saying it strides against their policy on data use for eligibility decisions (Lee 2018). In Finland, 

the company Digital-Minds47 performs personality profiling of candidates by using AI-based text 

processing of emails and social networks public data. The company has between 10 and 20 Finn-

ish companies as customers (AlgorithmWatch 2019). The aim of the product is to replace tradi-

tional personality profiling tests and is in line with other general purpose personality insight 

tools such as that provided by IBM Watson (see Figure 14). IBM Watson Personality Insights is 

based on linguistic analytics from digital communications to infer individuals' intrinsic personal-

ity characteristics. IBM developed models to calculate scores for the Big Five dimensions (Agree-

ableness, Conscientiousness, Extraversion, Emotional range and Openness), Needs, and Values 

from textual information. The models are based on research in the fields of psychology, psycho-

linguistics, and marketing (IBM Corp. 2019). Personality Insights scoring relies on machine 

                                                           
44 Neuro-Linguistic Programming has been accused of pseudoscience by several authors https://en.wik-
ipedia.org/wiki/Neuro-linguistic_programming#Scientific_criticism  
45 https://www.hirevue.com/products/video-interviewing  
46 https://learn.catalyte.io/  
47 https://www.digitalminds.fi/ 

https://www.tribepad.com/video-interviewing/
https://en.wikipedia.org/wiki/Neuro-linguistic_programming#Scientific_criticism
https://en.wikipedia.org/wiki/Neuro-linguistic_programming#Scientific_criticism
https://www.hirevue.com/products/video-interviewing
https://learn.catalyte.io/
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learning models that are trained using Twitter feeds together with scores from personality sur-

veys that were conducted among thousands of users to serve as ground-truth. The general as-

sumption in all these systems is that characteristics that are inferred from text are reliable pre-

dictors of real-world behaviour (IBM Corp. 2019). 

 

Figure 13 Predictim example report. Source (Merchant 2018). 

 

Figure 14 Personality insights generated by IBM Watson. Source https://personality-insights-demo.ng.bluemix.net/. 

https://personality-insights-demo.ng.bluemix.net/
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2.4. Selection and rejection 
The last stage of the hiring process is the selection of candidates. Personality profiling can also 

be performed here to complete the decision.  

Offer  
By the offer stage, we are referring to the process by which an employer seeks to negotiate 

salary, benefits, starting date, duration of the contract, etc. Some tools allow for the personali-

sation of offers and predicts if the applicant is likely to accept the offer (Bogen and Aaron 2018). 

As an example, Oracle’s Recruiting Cloud48 promises they can estimate, based on previous data 

(although the details of what kind of data is not specified), the likelihood of  a candidate accept-

ing a job and how different changes in the offer will increase or decrease this probability offer 

(Bogen and Aaron 2018). Another example is the PeopleStrong HR platform, which is based on 

an ML model trained with historical recruitment data in order to assist in salary negotiation. In 

case the HR recruiter salary offer is higher than the suggested one the software can block the 

decision subject senior leadership approval49.    

Rejection  
Some companies are using hiring tools such as TribePad to keep communication with candidates 

by generating email templates, calendar alerts for calls or emails, but also by using chatbots to 

inform the candidate about the status of the process. In the case of rejection, some tools such 

as Pymetrics can make suggestions for ways the candidate can improve skills for future positions, 

or can recommend they apply for different positions or different types of jobs50. Mya chatbot is 

also designed to answer questions and provide feedback to all the candidates and maintain con-

tact from the moment they apply for a position. For example, the chatbot integrates with the 

calendar of the ATS to schedule messages and meetings and it can interact with passive or re-

jected candidates when new vacancies appear51. Workable includes a feature to pause the hiring 

process and ‘snooze’ candidates that will be contacted in the future52.  

3. Employee monitoring and surveillance 
In this section we focus particularly on the ways in which the long-standing history of worker 

surveillance and employee monitoring is evolving with the development of data-driven technol-

ogies.  

3.1. Data integration and intelligent data analysis 
The last years has seen a significant transformation in the nature of employee monitoring with 

the possibility of building multi-source datasets, the processing of unstructured data (text, audio 

and video), the deployment of predictive models, the popularization of wearables technologies, 

the omnipresence of smart phones and the use of social networking platforms. Monitoring can 

be performed at the workplace computer and phone or by tracking the movement and activity 

of employees by CCTV, wearables, access cards, etc. Figure 15 from Trades Union Congress 

(2018) shows the most common practices perceived by employees in the UK. The same report 

identified that surveillance practices grows with the size of the company.  

                                                           
48 https://cloud.oracle.com/en_US/adaptive-intelligent-apps  
49 https://www.peoplestrong.com/this-hr-firm-is-using-ai-to-hire-without-bias-negotiate-salary/  
50 https://www.pymetrics.com/candidates/  
51 https://mya.com/meetmya  
52 https://www.workable.com/snooze-job-candidates  

https://cloud.oracle.com/en_US/adaptive-intelligent-apps
https://www.peoplestrong.com/this-hr-firm-is-using-ai-to-hire-without-bias-negotiate-salary/
https://www.pymetrics.com/candidates/
https://mya.com/meetmya
https://www.workable.com/snooze-job-candidates
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Figure 15 Most extended practices in surveillance in the UK. Source (Trades Union Congress 2018). 

For instance, CCTV monitoring is not new, but in recent years it is possible to track individuals 

based not only on facial recognition but also on gait recognition from features extracted, at a 

relatively far distance, from the silhouette or the shadow of the individual53. Moreover, auto-

matic scene semantic labelling (see Figure 16) and understanding of video can create activity 

reports on how much time a person has used to expend in different activities (Deng et al. 2015) 

as well as emotion analysis (see example in Figure 17). 

 

Figure 16 Example of scene automatic semantic understanding with Deep Learning. Source (Deng et al. 2015). 

                                                           
53 http://www.watrix.ai/en/gait-recognition/  

http://www.watrix.ai/en/gait-recognition/
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Figure 17 Example of emotion analysis with computer vision. Source https://nordicapis.com/20-emotion-recognition-
apis-that-will-leave-you-impressed-and-concerned/. 

Amongst the rise of new surveillance practices, perhaps the most significant issue is the infor-

mation fusion tendency to allow further processes of profiling and predictive management of 

employees. For example, the RetailNext system shown in Figure 18 can integrate internal and 

external data sources to create reports, generate alerts, perform predictive analytics among 

others.  

 

Figure 18 RetailNext integration of different data sources. Source https://retailnext.net/en/how-it-works. 

Worker surveillance can be also run in an indirect manner. The research of Levy and Barocas 

(2018) suggests that data gathered on one group often impacts on another group not directly 

surveilled. Levy and Barrocas call this refractive surveillance to describe the dynamic of collecting 

information about one group to ease control over a different group. For instance, customer 

tracking with surveys, facial recognition or behaviour analysis in retail can typically be used to 

automatically schedule the workforce. Refractive surveillance is very relevant since many cus-

tomer datafication techniques are being deployed rapidly in stores. According to research by 

CSC in 2015, 25% of UK retailers were using facial recognition technology, and near 60% in the 

https://nordicapis.com/20-emotion-recognition-apis-that-will-leave-you-impressed-and-concerned/
https://nordicapis.com/20-emotion-recognition-apis-that-will-leave-you-impressed-and-concerned/
https://retailnext.net/en/how-it-works


18 
 

case of fashion retailers54.  Refractive surveillance can happen in other contexts. For instance, 

teachers and academics are frequently evaluated by monitoring students’ behaviour, outcomes 

and surveys, as documented elsewhere (see for example Mardikyan and Badur 2011; O’Neil 

2016). 

3.2. Presence control 
The most basic form of monitoring is presence control which is deployed to sign in at work or to 

implement security policies. To prove their presence in the workplace, employees must use 

codes, ID cards, RFID chips or biometrics. Biometric authentication for identification is also inte-

grated with data analytics tools to register worker activity. Kronos InTouch uses employee fin-

gerprint and passcodes to perform employee-tracking55 inside retail stores, e.g. employee’s ac-

tivity in cash queues. In addition to presence registering, some organizations use these identity 

systems to track employees along facilities. For instance, some companies monitor the toilet use 

via these presence control systems (Trades Union Congress 2018; Van Oort 2018). Extreme cases 

of activity registering can occur, such as the Spanish company Abengoa which subtract toilet 

time from the overall working hours. This policy is implemented by placing barriers that the 

workers have to open with their ID cards so that every in-out event is registered in the system. 

This company also demands that workers use their ID cards as electronic wallets to buy food in 

the company’s vending machines and restaurant. External food is not allowed and if the workers 

do not use their cards during several consecutive days the HR department demands an explana-

tion (González Paulino Ramos 2013). 

Other presence control systems designed to monitor the whereabouts of workers can be subtler 

and do not depend necessarily on intended actions. For instance, OccupEye sells a monitoring 

solution based on heat and movement sensors that tracks the presence of employees in specific 

places such as desks or meeting rooms. The sensors send all the collected information to a data 

repository to create presence reports that can be used, for instance, to optimise office space 

(see Figure 19 and Figure 20).  

 

Figure 19 OccupEye monitoring device. Source https://www.occupeye.com/how-it-works/. 

                                                           
54 https://www.biometricupdate.com/201509/csc-report-finds-that-25-of-u-k-retailers-use-facial-recog-
nition-in-store  
55 https://www.kronos.co.uk/products/kronos-intouch 

https://www.occupeye.com/how-it-works/
https://www.biometricupdate.com/201509/csc-report-finds-that-25-of-u-k-retailers-use-facial-recognition-in-store
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Figure 20 OccupEye report example. Source https://www.occupeye.com/how-it-works/. 

3.3. Computer and mobile phone 

Meta-data monitoring 
The monitoring of computer activity accompanied the introduction of the computer into the 

workplace. For instance, Wavecrest, an employee monitoring system, dates back to 199656. The 

reasons provided for computer monitoring are related to security, intellectual property protec-

tion, health and safety or performance among others. Common computer surveillance includes 

screen records, tracking of the changes in the local or network drives, keystroke monitoring, idle 

time, printer records and video/audio obtained from peripherals57. 

However, certain prominent trends have emerged in recent years that highlight the current form 

of employee monitoring. The extension of computer surveillance to mobile phones increases 

the variety of available data, e.g. multiple sensors information. For instance, VeriClock allows 

workers to clock in and out with their smart phones. The app can include location and IP details 

in the register. Mtoag builds employee tracking apps as customer requirements. It includes em-

ployee status monitoring, such as whether the staff are available, engaged, on-route, busy, 

reached or completed a task or not; assignment information related to order progress; and client 

feedback after work completion58. Monitoring software such as RescueTime is also focused on 

improving personal and enterprise productivity and is available both for computer and mobile 

phones. It monitors and categorises the activity of the user such as time spent in each app/soft-

ware or time dedicated to each website and calculates screen time and warns when employees 

are working excessively59.  

                                                           
56 https://www.wavecrest.net/products/monitoring/employee_monitoring.php?utm_adgroup=em-
ployee_monitoring  
57 As an illustrative example of popular features, a review of employee monitoring software is provided 
here: https://uk.pcmag.com/cloud-services/92098/the-best-employee-monitoring-software  
58 https://www.mtoag.com/employee-tracking-app-solution.htm  
59 https://www.rescuetime.com/features  

https://www.occupeye.com/how-it-works/
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https://www.wavecrest.net/products/monitoring/employee_monitoring.php?utm_adgroup=employee_monitoring
https://uk.pcmag.com/cloud-services/92098/the-best-employee-monitoring-software
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Furthermore, computer surveillance has extended to data from systems such as professional 

email, personal social networks or mobile phones to the creation of databases for augmenting 

so-called ‘people analytics’. ‘People analytics’ mainly refers to the use of data collection and 

analysis methods to understand and optimize the employees of a business and will be covered 

in more detail in Section 4 on Management.  For instance, Humanyze anonymizes and integrates 

data from several data sources such as the Sociometric Badge (see Section 3.4), Skype, Slash, 

Office 365, shared calendars and email60. The integrated data is then analysed with data science 

techniques, organizational network analysis and behavioural science to ‘discover’ patterns such 

as informal communication networks or to measure and test the effect of interventions such as 

moving office or employee engagement programs. 

Content monitoring 
The previous monitoring tools register and analyse meta-data or anonymised data of worker 

communications. However, the analysis of communications content is a growing trend due to 

the popularization of tools for unstructured data analysis. For instance, the field of sentiment, 

emotion and tone analysis based on digital data, initially motivated by marketing research, is 

being incorporated into worker surveillance for different purposes. Emotion recognition appli-

cation programming interfaces (APIs) can be used to develop surveillance and monitoring tools 

on unstructured information such as text.  Figure 21 shows an example of text analysis with Tone 

Analyzer by IBM Watson.  

 

Figure 21 Example of tone evaluation of unstructured text with IBM Watson Tone Analyzer. Source https://nordi-
capis.com/20-emotion-recognition-apis-that-will-leave-you-impressed-and-concerned/. 

By scanning corporate communications or surveys, sentiment-analysis tools can tell managers 

how employees are feeling, i.e., what they like and dislike about the company or specific man-

aging decisions. For example, Twitter hired Perception, former Kanjoya, to analyse the open 

questions of the twice-yearly survey the company send to its employees to evaluate workplace 

experiences. Later, Twitter decided to add more open questions to the survey and started send-

ing the survey every month (Waddell 2016). The sentiment-analysis tools analysed the narrative 

answers to extract patterns that are then shared with managers. According to Ultimate Soft-

ware, the company behind Perception, the philosophy is that ‘building a great workplace and 

                                                           
60 https://www.humanyze.com/solutions/  
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culture that engages, motivates, and retains employees is understanding what they care 

about’61.  

Tools such as Perception can be integrated with corporate social networks such as Yammer (Mi-

crosoft) or Workplace (Facebook) to perform a continuous sentiment-analysis of employee com-

munications. IBM’s corporate social network Connections is available to all their employees in 

170 countries and is also sold to other companies. The network features the functionality of 

Facebook, Dropbox and Wikipedia at once. To analyse Connections data, IBM developed an an-

alytics tool called Social Pulse to monitor employee data in Connections.62 It provides insights 

using topic extraction and sentiment analysis of unstructured text in combination with struc-

tured demographic information from staff information systems (Shami et al. 2014). Social Pulse 

can track specific themes ‘such as eight core emotions, and workplace concepts such as social 

relations, financial transactions, respect, use of power (e.g., cooperation as contrasted with con-

flict), and some recently identified factors that indicate collaboration-health (e.g., use of first 

person *plural* pronouns)’. In addition to this, IBM has also developed an unsupervised learning 

tool called Avalanche to look for trends or alerts on internal and external social media63.  

3.4. Monitoring multimedia data 
In addition to the monitoring of content such as text, a number of tools have been developed to 

monitor multimedia data. In mid-2018 Walmart patented an audio surveillance technology 

called ‘Listening to the Frontend’ to record customers and employees sounds in the shopping 

facility to ‘determine performance of employees based on those sounds’ (Jones, Vasgaard, and 

Jones 2018). Other research projects propose to scan employees’ faces every time they access 

the building to determine if they are happy, sad, depressed or angry, with the purpose of using 

that data to optimize productivity (Waddell 2016). 

Smart video surveillance allows companies to perform people analytics in video and audio data. 

For instance, Faceter64 deploys office workforce attendance reports and analytics based on com-

puter vision to identify time card fraud, monitor employee attendance, compare work hours and 

overtime and report time allocation breakdown. Computer vision is also used by Eyetech DS65 

to offer monitoring solutions based on eye tracking and observe visual search processes, for 

instance in security staff training for baggage screening (see Figure 22).  

                                                           
61 https://www.ultimateperception.com/employee-engagement-survey-software  
62https://www.forbes.com/sites/jeannemeister/2016/10/05/the-future-of-work-companies-use-mar-
keting-tools-to-create-a-compelling-employee-experience/#549b0ea4227e 
63 https://researcher.watson.ibm.com/researcher/view_group.php?id=5965  
64 https://faceter.io/  
65 https://www.eyetechds.com/trainingandsecurity.html  
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Figure 22 Eyetech DS example of eye tracking for baggage screener training. Source Eyetech DS. 

Customer analytics based on video and sensors are relevant as refractive surveillance methods. 

Intel’s AIM Suite delivers real-time anonymous audience measurement and analytics, e.g. shop-

pers’ movements and reactions to visual cues, but also number of viewers, gender and age range 

or how much time they spent viewing content.66. The suite includes a web API to ease the inte-

gration with other systems such as POS to allow richer data gathering67. Others such as 3VR by 

Identiv converts raw video data into a searchable database that includes demographics, mood 

of the persons, etc. but also recognises and measures activities such as dwell time and loiter-

ing68. The semantically labelled video database allows fast investigations of crime and other 

events, but also the measurement of employee performance by creating analytics of specific 

tasks such as customer lines processing. 

Voice analysis is also monitored. Cogito69 is a system for call centres used by Zurich Financia and 

others. It can monitor callers and agents and suggest workers to change their behaviour if some 

events are detected. For instance, it analyses customer dissatisfaction levels and suggests ac-

tions, warns about fast speech, notifies about missed legal requirements or suggests calling a 

supervisor. Figure 23 shows an example of information displayed by Cognito.  

                                                           
66 https://aimsuite.intel.com/inside-aim-suite  
67 https://aimsuite.intel.com/inside-aim-suite/core-components  
68 https://www.identiv.com/products/video-data-analytics/video-analytics/  
69 https://www.cogitocorp.com/  
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Figure 23 Screenshot of Cogito tool for conversational guidance. Source (Simonite 2018). 

3.5. Chips, Wearables and IoT 
As RFID chips and wearables spread, and in general the Internet of Things (IoT) is deployed, new 

means of tracking appear that go beyond those focused on content or desk-based devices. The 

purposes can vary from implementing health and safety to a continuation of surveillance and 

control. Wearables and the IoT are key components of the ‘smart warehouse’ and the ‘smart 

employee’. In addition, some type of monitoring does not need any additional hardware since 

they rely on information collected by standard WiFi access points to collect motion infor-

mation70. In general, radio signals can be used for several purposes including pose estimation or 

sentiment detection71. 

For instance, RetailNext generates data from Bluetooth low energy beacons (BLE)72 to register 

the paths of both shoppers and staff members to get performance indicators such as when and 

where interactions occur. Also, by tracking sales associates, their movement can be excluded 

from traffic counts and shoppers’ in-store buying paths73. 

Radio-frequency identification (RFID) can be used to track workers with different purposes. By 

adding RFID tags to uniforms, boots, helmets, etc. and associating a unique code with the item 

of each operator. This, together with a sensor network is used to monitor worker location and 

presence. For instance, the Spanish company Tagingenieros implements safety against danger-

ous machines or moving vehicles through RFID tags74. It can also detect if the worker is wearing 

all the necessary protection before accessing dangerous zones. The product registers the access 

of each operator.  

Wearables in the workplace has become a prominent trend with hundreds of new devices 

launched every year75. For instance, Amazon has patented a wristband to track and conduct 

workers. The device uses ultrasonic signals to precisely identify workers’ hand movements and 

it utilizes haptic feedback to nudge them in different directions by vibrating against the wearer’s 

skin (Solon 2018). Amazon’s gadget is aimed at increasing productivity in their smart warehouse 

but other gadgets such as ViSafe watch workers’ safety habits. ViSafe collects movement and 

muscle activity information from multiple body locations, and then analyses and reports on how 

                                                           
70 https://www.datumize.com/warehousing-industries  
71 http://rfpose.csail.mit.edu/  
72 https://en.wikipedia.org/wiki/Bluetooth_low_energy_beacon  
73 https://retailnext.net/en/download/employee-exclusion-measurement/  
74 http://www.tagingenieros.com/ENGLISH/?r=es/node/33  
75 https://www.wearable-technologies.com/?s=employee  
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employees move through their work time daily76. The data analytics of ViSafe is intended to 

improve workplace safety, manual handling, office ergonomics, workplace design and employee 

productivity. It has been used in the Transport of London to study the emergency response 

workers movement and muscle activity information from multiple body locations simultane-

ously77. Kinetic’s REFLEX78 is another smart device that uses sensors and biomechanical analysis 

to determine worker postures and warn them with vibrations if a dangerous posture is detected, 

for instance excessive bending (see Figure 24). REFLEX sends in-device collected data to a dash-

board analytics to provide managers with a centralised data repository that includes analytics of 

individual workers (see Figure 25) and the whole company (Figure 26). The system allows for the 

creation of personal goals and competitions to reduce unsafe postures or improve work habits.  

 

Figure 24 Illustration of the features of REFLEX. Source Kinetics https://wearkinetic.com/product. 

                                                           
76 https://www.dorsavi.com/uk/en/visafe/  
77 https://get.dorsavi.com/tfl-visafe/  
78 https://wearkinetic.com/product  
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Figure 25 Screenshot of Kinetic Dashboard. Source https://www.wearkinetic.com/kinetic-dashboard. 

 

Figure 26 Analytics panel generated with REFLEX data. Source Kinetics https://wearkinetic.com/kinetic-dashboard. 

https://www.wearkinetic.com/kinetic-dashboard
https://wearkinetic.com/kinetic-dashboard
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In other cases, smart phones and general wearables are repurposed for employee monitoring. 

Fitbit, a popular smartwatch company, offers health and wellness programs to companies based 

on data gathering to promote physical activity between employees79. This includes ‘best prac-

tice’ recommendations such as positioning managers as role models for physical activity or or-

ganizing competitions for teamwork80. In other cases, the life style of employees is tracked by 

installing specific apps in their mobile phones. For instance, Ciclogreen aims to promote sustain-

able commuting by working with employers and organizations to encourage employees to cycle 

to work. To do so, they organise competitions and prices to reward employees by measuring 

their mobility patterns with an app, and then it produces a shared score of employees related 

to the competition, e.g. number of cycling kilometres in the last two weeks81. Also related to the 

tracking outside of working hours, productivity tools such as the BetterWorks management soft-

ware ‘blends aspects of social media, fitness tracking and video games’ into a shared dashboard 

to encourage productivity among workers (Ajunwa, Crawford, and Schultz 2016).  

In 2015 the Sweden start-up Epicenter attracted significant attention after they started to offer 

microchip hand implants to office staff (The Guardian News 2015). The chip implant played the 

role of other chip-based technologies such as traditional pass cards allowing employees to open 

doors or use the photocopier. To engage with workers, the company held parties for those will-

ing to be implanted. In the case of Epicenter, the chips were built by Biohax82, and they are based 

on NFC (Near-field communication) to interact with the smart building. Chip implants are still a 

marginal practice, but they have generated an extensive debate in the media about the changing 

nature of the workplace (Solon 2017; Zolfagharifard 2018). The European Parliament has re-

cently published an extensive report  on several issues related to chip implants including legal 

aspects, workers privacy, devices security, ethics and health and safety risks (Graveling, Winski, 

and Dixon 2018).  

In opposition to some of the previous systems mentioned, other projects claim to provide team 

analytics whilst upholding individual privacy. Humanyze is a company that offers organization 

level analytics without storing names and content of communications83. They have commercial-

ised a former MIT research project named The Sociometric Badge84. The ‘sociometer’ (see Figure 

27) is an electronic wearable that instead of gathering data automatically measures ‘the amount 

of face-to-face interaction, conversational time, physical proximity to other people, and physical 

activity levels using social signals derived from vocal features, body motion, and relative loca-

tion’. These measures are based on movement, audio volume and Bluetooth and infrared pings 

from other sociometers. The features extracted by the device are later analysed to estimate 

‘individual and collective patterns of behavior, predict human behavior from unconscious social 

signals, identify social affinity among individuals working in the same team, and enhance social 

interactions by providing feedback to the users of our system.’. The purpose of the system is to 

enhance social interactions by providing feedback to the users on an individual and private 

                                                           
79 https://healthsolutions.fitbit.com/employers/  
80 https://healthsolutions.fitbit.com/corporatewellness/  
81 https://www.ciclogreen.com/  
82 https://www.biohax.tech/  
83 https://www.humanyze.com/  
84 http://hd.media.mit.edu/badges/ and https://www.humanyze.com/product/order-sociometric-
badges/  
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dashboard. The private dashboard shows participants ‘how they spend their time and what con-

tributes the most to creativity, collaboration, productivity’85.   

 

Figure 27 A Sociometer badge prototype. Source http://hd.media.mit.edu/badges/index.html. 

4. Management 
Management has a tradition of finding ways to measure, evaluate and optimize the workforce. 

Numerical methods such as operational research, games theory or econometrics among many 

others are well known techniques used by management science to model and optimize work-

forces as well as other resources. The increasing datafication of work and spaces, as well as the 

availability of a variety of tools to process and use new types of data, presents some pertinent 

further developments in how management is carried out.  

4.1. Workforce scheduling and activity forecasting 
HR scheduling and customer traffic forecasting is based on more and more integrated data. Kro-

nos, which is widely used in retail and restaurant chains, collects information from a variety of 

sources such as shoppers and customers’ traffic or weather (Van Oort 2018). The information is 

continuously gathered, so that a company can break down the analysis in segments of time, for 

instance 15 minutes segments. From this, it can analyse the human resources needs for each 

time slot, so that the software comes out with the optimal -- in salary cost terms-- assignment 

of staff. Moreover, by fitting predictive models of historical data, the system can forecast cus-

tomer traffic to dynamically change the labour hours of employees and then reduce costs. For 

example, Jamba Juice used this software to reduce 5% of labour costs  (Greenhouse 2012).  

The platform RetailNext also implements future predictions of retail in-store behaviour based 

on historical data and statistical modelling. The tool simulates different scenarios such as interior 

remodels or larger footprint stores to assess the impact of decisions and investments86. TARA87 

is another tool to automatically create development tasks and timelines for software projects 

based on millions of previous software projects data. In addition, it automatically matches these 

tasks with pre-screened external contractors or with internal developers. 

Predictive modelling can also be used to identify the resources needed to perform certain tasks.  

For instance, Amazon launched a data science competition to predict an employee's access 

                                                           
85 https://www.humanyze.com/resources/data-privacy/  
86 https://retailnext.net/en/press-release/retailnext-in-store-retail-analytics/  
87 https://tara.ai/  
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needs, given their job role88. The purpose is to use historical data of staff roles to automatically 

grant or revoke employee access to resources (e.g. being able to log into a reporting portal). 

Tasks scheduling are also shaped by employees and clients profiling. For instance, Afiniti devel-

ops an AI based solution for call centres to pair callers and agents based on behavioural charac-

teristics89. The objective is to improve the chances of successful caller-agent interaction so that 

previous patterns of successful pairing are used to schedule the connection. These types of ap-

proaches need constant monitoring to produce behaviour analytics in combination with metrics 

such as conversion rate, customer satisfaction score, average handling time, etc. According to 

the company, this approach outperforms previous ‘performance-based routing’ (PBR) solutions 

for call centres.  

Automatic Call Distributors (ACD) based on skills are systems that match callers and agents 

based on predefined skills of the available staff, e.g. language knowledge or training on loans, 

and typically it is assumed that all the agents with a specific skill are equally capable of handling 

a customer’s enquiry90. The caller provides some information that is used to direct the call to 

the first available target agent that can handle the type of call. In some contexts, the traditional 

skills routing is not suitable since categories are static and must be carefully defined. An emerg-

ing option is to automatically derive skills of agents by looking at the records of previous suc-

cessful agent-customer interactions to extract patterns of successful interactions and then use 

these patterns to perform ACD based on automatic skills detection (McGann et al. 2017). More-

over, labelling of staff capabilities can be used to schedule turnover to ensure that all the areas 

are permanently covered91.  

4.2. Attrition, engagement and turnover prediction 
Many studies demonstrate that engaged companies improve indicators such as sick days, 

productivity, employee retention or customer satisfaction. Therefore, companies are using pro-

filing and predictive tools to measure employee engagement or reactions to changes in a com-

pany. For example, Peakon92 is an engagement platform used by many UK companies that are 

moving from annual surveys to a continuous data gathering and evaluation approach. Peakson 

includes performance benchmarks to produce an engagement score that is connected to targets 

of the business (see Figure 28). It uses machine learning to identify how demographics such as 

age, tenure, gender, department, job level and office location are related to employee engage-

ment scores. Peakson also provides employee segmentation to evaluate the alignment of differ-

ent segments with the company values as shown in Figure 29. My Happy Force93 is a mobile app 

to gather data on how employees feel and analyse their opinions, worries and motivations. The 

tool claims that it aims to create an environment to make employees feel that their opinions are 

considered. Every day, the app asks the workers how they feel, and the company dashboard 

presents information of the staff’s app use during the current day, last week and last month. 

Understanding employee opinion about the employer is also done by opinion mining in general 

social networks and employer rating sites such as Glassdor. For example, Starbucks used senti-

ment analysis to perform a study of workforce engagement by collecting 5000 reviews from 

Glassdor (Meister 2016). The opinion mining results revealed that many of the workers felt 

‘pride’ working for the company and they had a ‘deep emotional connection’ towards the 

                                                           
88 https://www.kaggle.com/c/amazon-employee-access-challenge  
89 https://www.afiniti.com/what-we-do/how-it-works  
90 https://www.rostrvm.com/pdf/Call_centre_skills_based_routing_in_practice.pdf  
91 https://www.genesys.com/capabilities/workforce-optimization  
92 https://peakon.com  
93 https://www.myhappyforce.com/en  
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company’s mission. However, it is worth noting that the reviews did not pay attention to health 

benefits or other compensation schemes.  

Social networking sites have emerged as key sites for management, as they have become inte-

grated platforms in the workplace. These platforms serve different purposes such as alternative 

communication channels (messages, chats, videoconferences…), team coordination, documents 

repository, knowledge base, etc. but also as a means to improve worker engagement by allowing 

managers and employees to communicate and provide feedback, discuss or value organizational 

changes, recognise the work of others, etc. We already mentioned Yammer (from Microsoft), 

Workplace (software as a service by Facebook) or Connection (IBM) that all engage in this kind 

of analysis. For instance, Workplace features polls to get a quick pulse on issues by analysing 

Facebook-like reactions to news and content, and features chatbots to perform HR tasks such 

as making payroll or speeding up and facilitating so-called ‘onboarding processes’94, which refers 

to the process by which new employees adapt to the social and performance culture of an or-

ganization. Workplace’s functionality can be extended with existing tools such as Kronos to sub-

mit, for instance, time-off requests directly from within the application to the managers95. Other 

extensions such as Recognize96 aims to implement role-based employee recognition, employee 

nomination, staff rewards like gift cards or paid time-off, work anniversaries and more. Work-

place is used in Domino’s, Heineken, Danone, Volkswagen, WWF amongst many companies97. 

 

Figure 28 Peakson’s dashboard showing employee engagement report. Source https://peakon.com/products/en-
gage/bespoke-benchmarking/. 

                                                           
94 https://www.workplace.com/workplace/about  
95 https://www.workplace.com/workplace/integration?app_id=168596273947060  
96 https://www.workplace.com/workplace/integration?app_id=349213015502973  
97 https://www.workplace.com/workplace/case-studies/wwf  
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Figure 29 Peakson’s values overview pane.. Source https://peakon.com/products/engage/values/. 

A prominent activity making use of predictive analytics in the context of workplace management 

is employee turnover prediction. For instance, IBM released a dataset with fictional data to mo-

tivate research on attrition prediction and models to calculate the risk of an employee quitting. 

By analysing the models, it is said that managers can identify causes and act consequently98. The 

dataset includes variables such as overtime hours, distance from home, age, marital status, 

number of companies worked at, years in current role, income, etc. In addition, predicting a 

person’s willingness to leave an organization goes beyond talent retention or improving working 

conditions. For instance, these tools can be used to take actions related to information security 

and information leaks, e.g. revoking access to confidential information or resources. For exam-

ple, IT security practitioners interviewed by Korolov (2018) claimed that it is easy to spot a per-

son that is leaving the company by detecting more sent emails with attachments to their per-

sonal address than usual. However, even this simple heuristic needs the constant processing of 

email logs for the purposes of monitoring and analytics. Other data competition, based on Happy 

Force records, tries to study the feasibility of predicting turnover, no matter if the worker quit 

or was fired, based on data of mood, comments and interactions of workers using the app99. The 

goal is to clarify indicators of employees that will churn (quit the job), or that are at risk of churn-

ing, to contribute to the understanding of causes and attempt to reduce the turnover rate. HR 

systems such as UltiPro by Ultimate Software have modules to ‘measure’ employee engagement 

through surveys and non-structured questions that allow organizations to uncover not only what 

employees say ‘but also how they truly feel about the workplace and leadership’100. The analysis 

can be turned into a score metric of each employee, team or company to allow engagement 

comparison as shown in Figure 30.  

                                                           
98 https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset  
99 https://www.kaggle.com/harriken/employeeturnover  
100 https://www.ultimatesoftware.com/UltiPro-Solution-Features-Employee-Surveys  
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Figure 30 Example of engagement comparison tool UltiPro Perception. Source https://www.ultimatesoft-
ware.com/UltiPro-Solution-Features-Employee-Surveys. 

4.3. Profiling, performance evaluation, optimization and forecasting 
Performance evaluation is perhaps the main objective that motivates workplace monitoring. 

From basic input/output indicators to sophisticated metrics and predictive scores each particu-

lar business tries to measure and predict what is happening or would happen. Beyond metrics 

and analytics, performance evaluation has evolved to obtain finer levels of measurement of 

worker activity and behaviour throughout, to include forecasting related to turnover prediction 

or risk assessment such as ‘loss prevention’ (the likelihood of internal theft, shoplifting, return 

fraud, etc.) based on data-feed models.  

We categorise the measurement and evaluation of performance in three ways: 

• Reports and metrics are direct observation of data, e.g. cost per hire. 

• Key Performance Indicators (KPI) are measures of performance against business objec-

tives and are typically used to reward employees if their performance is on target, e.g. 

customer retention rate.  

• Analytics are intended to identify which factors impact on performance. They can be 

used to figure out how to improve the company but also to forecast performance in 

future scenarios. Examples are People Analytics, which refers to behavioural data that 

reveals how people work or that can drive changes in how companies are managed, or 

HR Analytics, which relates to HR administrative processes.  

While metrics and KPI are focused on individual performance, analytics have a wider view that 

typically involves the whole company and pays attention to teams and collaboration amongst 

workers. Figure 31 shows a trending employee value framework that combines the worker indi-

vidual, team and organization level contributions.   

https://www.ultimatesoftware.com/UltiPro-Solution-Features-Employee-Surveys
https://www.ultimatesoftware.com/UltiPro-Solution-Features-Employee-Surveys
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Figure 31 Social capital point of view of employee value by TrustSphere. Source https://www.trustsphere.com/why-
social-capital-matters/. 

Metrics and Key Performance Indicators  
Relevant metrics and KPIs are defined differently across industries. The German company Data 

Pine features performance evaluation templates of metrics and KPIs for each industry101. For 

instance, for logistics and warehouses the list includes shipping time, degree of incidents, deliv-

ery time, transportation costs, warehousing cost, inventory turnover and others (see Figure 32). 

In this case, the metrics are a proxy for worker behaviour and performance. Direct performance 

metrics for warehouses are those related to the movement of workers within the facilities or 

the number of packets they process. In this case, data can be extracted from any or several of 

the means discussed earlier. Once metrics are collected, optimisation methods can be used to 

improve processes. For example, Datumize provides metrics related to the flow of workers and 

customers in a warehouse and determine the optimal path for each motion operation and can 

combine this information with other sources to measure workforce performance102.  

                                                           
101 https://www.datapine.co.uk/dashboard-examples-and-templates/management  
102 https://www.datumize.com/datumize-motion-intelligence  
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Figure 32 Dashboards of KPIs for a logistics warehouse. Source https://www.datapine.co.uk/dashboard-examples-
and-templates/logistics. 

 

Figure 33 PureCloud analytics by Genesys. Source https://www.genesys.com/capabilities/analytics-and-reporting  

Genesys is a worldwide company offering tools to deploy in call centres. Their system monitors 

many of  de facto standard KPI metrics (International Finance Corporation 2007) to create ana-

lytics dashboards, but it can also produce automatic warnings if an individual or team activity 

https://www.datapine.co.uk/dashboard-examples-and-templates/logistics
https://www.datapine.co.uk/dashboard-examples-and-templates/logistics
https://www.genesys.com/capabilities/analytics-and-reporting
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deviates from established thresholds (see Figure 33). The Performance Management Advisor 

Suite by Genesys can display business metrics such as revenue, units, etc. in combination with 

the above call centre metrics103. Another example is Talk Desk, a company that deploys to con-

tact or call centres affiliated with many global companies operating in the EU such as TaskRabbit, 

Scott (Monsanto) or Zenconnect. Talk Desk’s dashboard presents KPIs together with the level of 

compliance with targets. The dashboard is available both for agents and managers (see Figure 

34 and Figure 35).  

 

Figure 34 KPIs and performance targets produced by Talk Desk. Source https://appconnect.talkdesk.com/app/ob-
serveai.html. 

                                                           
103 https://genbin.genesys.com/media/Genesys-Performance-Management-Advisors-DS-EN.pdf  
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Figure 35 TalkDesk dashboard showing performance of skills that are correlated to business objectives. The dash-
board is constantly updated and is available for agents and managers. The manager Dashboard ranks employees 

according to the skills scoring produced by AI models. Source https://appconnect.talkdesk.com/app/observeai.html. 

People Analytics 
We have presented organization data systems that serve the purpose of measuring performance 

of workers by registering and reporting their activity. However, as we pointed out in other sec-

tions, predictive tools are creating new ways of evaluating workers trying to estimate how they 

would behave or perform in the future, as a way to identify which factors drive business im-

provements.  

Skills and predictive analytics related to performance 

The range of performance metrics and workplace surveillance we have outlined above, together 

allows for the creation of statistical and machine learning models that not only forecast events 

and performance of staff, but also analyse what characterizes individual and team performance 

profiles.  For instance, Genesys combines KPI metrics reports, text and speech analysis and busi-

ness metrics to identify critical agent skills that lead to successful interactions and then develop 

specific training for these skills in the context of call centres. Based on the continuous monitoring 

of all conversations the system can establish whether the key abilities that the ‘good workers’ 

must have are being used or if the training is really improving those key skills. Speech and text 

processing can be used to automatically categorize conversations, detect unexpected events 

and trends or to monitor compliance. Other products such as Talk Talk offers, through third party 

https://appconnect.talkdesk.com/app/observeai.html
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apps, speech transcription, automated quality assessment, compliance monitoring, sentiment 

and empathy analysis of agents and customers, caller churn prediction and others, as a means 

of creating quality assurance analytics (see Figure 36 and Figure 37).  

 

Figure 36 Example of agent's tone analysis by Simple Emotion. Source https://appconnect.talkdesk.com/app/simple-
emotion.html. 

 

Figure 37 Agent attitude correlation analysis tool to evaluate the attitude of workers based on voice tone analysis. 
Source https://appconnect.talkdesk.com/app/simpleemotion.html. 

Revisiting retail, RetailNext not only register, aggregate and centralise information of all trans-

actions of every employee at the point of sale, but also creates profiles of stores and employees 

with labels of ‘highest risk stores’ and ‘highest risk cashiers’. By combining POS data with CCTV, 

it can also perform exception reporting that automatically alerts if high-risk transactions like 

cash refunds and post-sale voids happen where customers are not present (Hartjen 2016). 

https://appconnect.talkdesk.com/app/simpleemotion.html
https://appconnect.talkdesk.com/app/simpleemotion.html
https://appconnect.talkdesk.com/app/simpleemotion.html
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Figure 38 shows the RetailNext panel showing scores and trends of stores and workers related 

to these predictions. However, research has shown that behaviour profiling and exception alerts 

can exert more pressure on already demanding tasks. According to the field work of Van Oort 

(2018), workers come out with strategies such as introducing ‘technically valid, but inaccurate’ 

information at the cash register to meet performance requirements or to avoid automatic alerts.  

 

Figure 38 Loss prevention report panel of RetailNext. Source RetailNext. 

Predictive profiling is also a trend in some HR tools. For instance, UltiPro incorporates a tool not 

only to create analytics to identify top performers in an organization, but also to estimate the 

likelihood of an employee being a high performer in the future. As other tools, it forecasts work-

ers’ intent to stay or leave the organization within the following 12 months. Figure 39 shows a 

screenshot of predictive analytics by UltiPro. 
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Figure 39 Example of UltiPro predictive profiling of employees. Source Ultimate Software https://www.ultimatesoft-
ware.com/UltiPro-Solution-Features-Predictive-Analytics  

Organizational Network Analysis 

Organizational network analysis (ONA) refers to the discovery and optimization of the social 

network of a company. The social network of a company refers to the actual relations that drive 

the company in parallel to the formal organization and roles. The idea is to get insights on how 

people show up in an organization by revealing invisible patterns of information flow and col-

laboration (Green 2018). ONA aims to measure the social value at individual, team and organi-

zation levels by building or learning the social graph of an organization. In the social graph, peo-

ple are nodes who serve as essential connections to exchange ideas and information. Figure 40 

shows an illustrative example of the network structure that can reveal ONA.  

https://www.ultimatesoftware.com/UltiPro-Solution-Features-Predictive-Analytics
https://www.ultimatesoftware.com/UltiPro-Solution-Features-Predictive-Analytics
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Figure 40 Fictional example of the formal structure of a company versus the social network structure. Source Rob 
Cross https://www.robcross.org/wp-content/uploads/2017/02/half-day-leadership-development-presentation-

deck.pdf. 

In a document that heavily influenced HR texts, Deloitte identifies three type of nodes (McDow-

ell, Horn, and Witkowski 2016): 

• Central node are people that seem to know every co-worker, share lots of information 

and influence groups. This role is not necessarily linked with a specific position in the 

formal hierarchy but they are highly engaged in the company.  

• Knowledge broker are people who creates links between groups helping information to 

disseminate.  

• Peripheral are workers overlooked and unconnected to the rest of the company.  

The central node are core elements that must be identified and managed properly. Central 

nodes are essential, for instance to help the rest of the workforce to quickly adopt changes. On 

the other hand, peripheral people are labelled as ‘risk of exit’ people that, especially if talented, 

can leave the company in any moment and can be hard to replace since the people with this 

profile are less likely to share their knowledge with others (McDowell, Horn, and Witkowski 

2016). See Figure 41 for an example of an ONA based on this typology.  

https://www.robcross.org/wp-content/uploads/2017/02/half-day-leadership-development-presentation-deck.pdf
https://www.robcross.org/wp-content/uploads/2017/02/half-day-leadership-development-presentation-deck.pdf
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Figure 41 Example of ONA and roles identification. Source Deloitte (McDowell, Horn, and Witkowski 2016). 

The purposes of ONA go beyond role identification. For instance, TrustSphere, a global company 

providing People Analytics tools104, can analyse the network evolution to characterize a ‘typical’ 

set of communication patterns so that deviations from normal behaviour signal fraud events 

such as information leakage105. 

ONA is also used at organizational level to produce information that will help to reconfigure the 

organizational design or infrastructures so that they are closer to the real web of employees. 

This is the case of The Municipality of Odense in Denmark, that applied the Organizational Net-

work Diagnostic by Innovisor to get insights into the collaboration networks among the employ-

ees and detected that the people in charge of services of one of the most important neighbour-

hoods had weak social cohesion, and then acted to improve the service in that neighbour-

hood106. According to Innovisor, as a result of the analysis, the public organization also moved 

work organization from a project-based approach to an operations-based approach.  

The social graph is built by using several information sources such as IT communications, e.g. 

metadata of emails, shared calendars, file sharing systems, productivity tools, etc. Figure 42 

shows different social graphs produced by Worklytics, a product used by Telefonica, WeWork 

and others, to analyse how employees interact through different IT communication tools. ONA 

can use information from the physical workplace for instance by gathering data from wearables 

such as the Sociometric Bagdet. For instance, Humanyze used these data sources and techniques 

to identify performance disparities between two branch locations of a large European Bank107. 

In this case, they measured virtual and physical corporate communication and then segmented 

this data by compensation and tenure. The analysis of the face-to-face interaction between em-

ployees revealed that the best performing branches typically have more interaction amongst all 

the employees. Figure 43 shows networks of interaction between employees of different 

branches of the bank. 

 

                                                           
104 https://www.trustsphere.com/organizational-network-analytics/  
105 https://www.trustsphere.com/risk-analytics/  
106 https://www.innovisor.com/2019/02/18/case-municipality-of-odense/  
107 https://www.humanyze.com/case-studies-european-bank/  
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Figure 42 Social graphs of interactions of employees through different communication means. Source 
https://www.worklytics.co/blog/going-beyond-email-in-organizational-network-analysis/. 

 

Figure 43 Networks of people interactions build by Humanyze. Source https://www.humanyze.com/case-studies-
european-bank. 

5. Conclusions and discussion 
In this report we have sought to scope ways in which the workplace is being transformed by 

data-driven technologies, from hiring to firing and everything in-between. In particular, we have 

identified and categorised a set of tools and tried to illustrate how are they work and ways in 

which they are used based on industry material, previous research and media reports. Whilst 

our focus has been on tools that are used by European organisations or international companies 

operating in Europe, in several instances use cases are not publicly listed and so it is unclear who 

is using the tool and for what purpose. Therefore, it is difficult to identify trends in sectors out-

side those using sector-specific tools such as retail stores or call centres. Nevertheless, a few 

prominent trends stand out that highlight some of the terms upon which the datafication of the 

workplace is happening. First, it is important to note that, in line with the analysis from the Trade 

Union Congress (2018), surveillance and control system adoption increases with the size of the 

https://www.worklytics.co/blog/going-beyond-email-in-organizational-network-analysis/
https://www.humanyze.com/case-studies-european-bank
https://www.humanyze.com/case-studies-european-bank
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company. Obvious examples are call centres, retail branches or the smart warehouses of Ama-

zon (Arens 2017) that all seek to scale processes and have been prominent in our research into 

the use of such technologies. Moreover, according to a survey done by the Trade Union Congress 

(2018), the more common a form of surveillance is, the more accepted by the workforce it is. 

Second, many tools to automate the hiring funnel are used in companies with high-volume hiring 

and high turnover, particularly in low-wage employment. For instance, Unilever adopted 

HireVue to speed up the process of hiring 800 individuals from a pool of 250,000 applications 

and reduced 75% of the recruiting time108. Urban Outfitters, a global retail company, uses 

HireVue to evaluate emotion and personality profiles to select employees that will interact di-

rectly with customers109. Companies well known for offering low-wage salaries and high turno-

ver positions such as KFC, Subway or Pizza Hut rely on TribePad to manage their candidate and 

worker pools110.  

In assessing the automation of the hiring process, the funnel metaphor helps to understand hir-

ing as a set of stages that will filter candidates. Candidates will be discarded, matched and 

ranked based not only on the profile they explicitly create regarding their skills or experience, 

but also by considering inferred scores related to personality or speculative estimations of their 

future performance or how likely will they quit or not the job. That is, with automation we see 

an emphasis on not just what candidates are able to do, but who they are or are likely to be. 

Recommendation systems have become prominent along with the kinds of problems that are 

imbued in such systems. For example, Bogen and Aaron (2018) warn about the problem of rein-

forcing biases in hiring practices with the use of collaborative filtering since these tools are pur-

posed to capture user preferences to select similar items. At the end of this process, the inter-

views are augmented to infer information not directly provided by candidates, but through in-

ferences based on a range of data sources that then also inform predictive tools right down to 

salary estimation. Whilst these tools are often said to address issues of discrimination in hiring 

practices and can be used to highlight ‘unconscious’ bias against particular groups (or eliminate 

other factors that might influence decision-making), they are also seen to increase the infor-

mation asymmetry that defines the employer-candidate relationship.  

This increase in information asymmetry is also prevalent in the overview of employee monitor-

ing and workplace surveillance.  Digital data and meta-data monitoring is being pushed forward 

by text analysis tools that allow to perform opinion and emotion mining, video analysis systems 

able to perform semantic understanding, as well as mood and emotion evaluation, of CCTV, and 

audio analysis techniques, that create new performance metrics, implement automatic compli-

ance of legal terms or perform tone classification to optimize the behaviour of the agents. Apart 

from prominent concerns related to privacy and data protection, there are some fundamental 

questions being asked about the ‘scientific’ basis of these technologies. The rise of emotional AI 

is playing an important role in measuring the mood of both the workforce and customers, that 

later directly or indirectly impact on the organisation of work. Many companies providing these 

tools claim that these emotion detection models are based on solid scientific principles, and that 

the detected emotions are valid predictors of how the person will behave in the workplace. 

However, the premise of the field of emotional AI is being challenged in recent years. For in-

stance, most of the emotional detection tools assume that all humans feel the same six basic 

emotions and that they express these emotions in similar ways, a largely outdated scientific 
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premise (Firth-Godbehere 2018). In addition, misuse of ML models can happen if the model and 

training data is not property documented or understood by the development team. For instance, 

a computer vision model that detect smiles could be wrongly used for emotion detection or a 

NLP model aimed to predict the toxicity of a comment in content moderation could be misused 

to make judgments about a person (Mitchell et al. 2019). Therefore, although new monitoring 

tools can improve health and safety in the workplace, these systems often include a centralized 

repository of activity that can be accessed by managers and repurposed for control.  

Such analyses of workers that rely on the constant monitoring of activities and behaviour have 

become an integrated part of management science and operational research, finding new ways 

to ‘optimize’ staff using different tools and forecasting models for organising workload, sched-

uling and engagement. Various forms of People Analytics and Organizational Network Analytics, 

using a range of tools and metrics, increasingly shape the management of workers and the work-

place. These trends highlight the broader issue of interpreting identities and social relations 

based on data points, as a way to assess ‘performance’ both at individual and collective levels 

that raise fundamental questions about the design of data collection and the information used 

to ‘measure’ such identities and relations, and the kinds of anxiety and stress such mechanisms 

might induce (O’Neil 2016). Whilst companies seek to use such tools to enhance productivity 

and overall performance, analyses now also extend to predictive models seeking to estimate risk 

and likelihood of leaving a job. The basis upon which such predictions are made remains obscure 

as the nature of the training data or variables used is not readily available. Some research has 

found that the use of multiple source data incorporates biases that can worsen structural ine-

qualities (Sam and Michelle 2018). For instance, Cornerstone found that applicants using newer 

versions of browsers on their computers will stay 15% longer than those using default browsers, 

thus penalising the score of people using public computers (e.g. at a library) that are likely to 

have less updated software. There are also growing concerns about the automation of firings 

that close down the possibility of explanation or ways to challenge decisions (Diallo 2018).  

The discussion of the impact of these technologies is not straightforward and many grey areas 

exist. In several instances, systems are being deployed in contexts imbued with long-standing 

histories of discrimination and inequalities, and where ambiguity already exists with regards to 

worker autonomy and workers’ rights. As we continue to research the rapid datafication of the 

workplace and explore case studies as part of the DATAJUSTICE project, we hope to shed further 

light on this debate.  
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